

RESEARCH STATUS AND TREND OF GRAIN LOSS MONITORING SENSOR TECHNOLOGY

谷物损失监测传感器技术研究现状及趋势

Jiaxin DONG^{1,2)}, Shengxue ZHAO^{1*}, Anqi ZHANG^{2,3)}, Zhijun MENG²⁾, Feng WANG²⁾,
Wuchang QIN²⁾, Mingyang LI¹⁾

¹⁾ Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang / China;

²⁾ Information Technology Research Center of Beijing Academy of Agriculture and Forestry Sciences, Beijing / China;

³⁾ Intelligent agriculture State Key Laboratory of Industrial Power Equipment, Beijing / China

Tel: +86-18210255630; E-mail: 18210255630@163.com

Corresponding author: Zhao Shengxue

DOI: <https://doi.org/10.35633/inmateh-77-19>

Keywords: grain loss monitoring; piezoelectric effect; optimization of sensor structure; kernel signal recognition algorithm

ABSTRACT

To ensure food security and reduce harvest losses, improving the monitoring accuracy of grain combine harvester operation loss is of great importance. This paper systematically analyzes the technical progress of piezoelectric sensing applications in this field. In terms of materials, piezoelectric thin films (PVDF) exhibit faster response speeds (signal attenuation shortened by 30%), but are prone to short circuits in high-humidity environments. Piezoelectric ceramics (PZT), when combined with a double-layer vibration isolation structure, can effectively reduce vibration interference errors to below 5%, providing better stability. Regarding sensor structure, the array layout enhances multi-target recognition, while the innovative double-layer cross structure enables analytical positioning of the spatial distribution of grain collisions, offering a new approach for accurately calculating loss rates. In signal processing algorithms, support vector machines (SVM) and decision trees perform well with small sample sizes; however, combining them with discrete element simulation (EDEM) is necessary to optimize feature extraction. Among these methods, the WOA-BP algorithm can control monitoring error within 6.23% through adaptive parameter adjustment. Nevertheless, current technologies still face challenges such as insufficient adaptability to varying material environments and limited algorithm generalization under complex working conditions. In the future, multidisciplinary collaborative innovation is required to develop hybrid algorithm models that integrate weather-resistant composite materials, intelligent adaptive sensor structures, and physical mechanisms, thereby establishing a high-precision, low-cost monitoring system and providing theoretical support for the research and development of grain loss detection equipment.

摘要

为保障粮食安全、减少收获环节损失, 提升谷物联合收获机作业损失监测精度至关重要。本文系统分析了压电效应在该领域的技术进展: 材料方面, 压电薄膜 (PVDF) 响应速度更快 (信号衰减缩短 30%), 但高湿环境易短路; 压电陶瓷 (PZT) 结合双层隔振结构则能有效降低振动干扰误差至 5% 以下, 稳定性更佳。传感器结构上, 阵列式布局增强多目标识别, 而创新的双层十字交叉结构可实现籽粒碰撞空间分布解析定位, 为损失率精准计算提供新思路。信号处理算法中, 支持向量机 (SVM) 与决策树在小样本下表现好, 但需结合离散元仿真 (EDEM) 优化特征提取; 其中 WOA-BP 算法通过自适应参数调整可将监测误差控制在 6.23%。然而, 现有技术仍面临材料环境适应性不足及复杂工况下算法泛化能力有限等挑战。未来需多学科协同创新, 开发耐候性复合材料、智能自适应传感器结构及融合物理机理的混合算法模型, 以构建高精度、低成本监测系统, 为粮食减损装备研发提供理论支撑。

INTRODUCTION

Food security stands as the paramount priority in national governance, constituting a "major national concern" (Food and Agriculture Organization of the United Nations [FAO], 2019). With China's consecutive bumper harvests and sustained grain supply at historic highs, domestic production now meets consumption demands (Chen et al., 2019).

However, as the world's largest food producer and consumer, China faces growing challenges in grain loss. Survey data indicates a comprehensive post-harvest loss rate of nearly 16%, primarily occurring during four stages: harvesting, transportation, drying, and storage. Notably, the harvesting phase accounts for approximately 31.25% of total post-harvest losses (Zhan et al., 2021; Zhu et al., 2023; Nath et al., 2024). While ensuring increased grain production, urgent research is needed to enhance post-harvest loss reduction technologies, with controlling harvesting losses becoming a key focus for future conservation efforts (Bomo et al., 2022). During combine harvester operations, five types of losses occur: cleaning loss, entrainment loss, threshing loss, grain leakage loss, and cutter platform loss, where 80% results from cleaning loss and 10% from entrainment loss (Chang et al., 2007; Nie et al., 2021; Liu et al., 2020; Zhou et al., 2010). Therefore, effective harvesting loss reduction can be achieved through controlling cleaning and entrainment losses (Singh & Mehta, 2017; Zhu et al., 2025). Grain loss sensors can monitor cleaning and entrainment rates, enabling subsequent adjustments such as modifying the cutter platform, adjusting cutting speed, or regulating fan airflow to minimize losses (Liu et al., 2008; Wang et al., 1999; Shi et al., 1998; Wei et al., 2023; Liu et al., 2023; Qing et al., 2024). In summary, grain loss sensor technology holds significant importance for ensuring food security and reducing grain waste (Kamara et al., 2019; Yin et al., 2024). This paper analyzes and summarizes current developments in grain loss monitoring technologies, examining advancements in piezoelectric components, impact-sensitive plates, sensor structure research, and signal recognition algorithms to provide valuable references for future academic studies.

CLASSIFICATION AND WORKING PRINCIPLE OF GRAIN LOSS MONITORING TECHNOLOGY

Since the 1970s, international research on monitoring loss in harvesters has made significant progress. Scholars have explored various grain loss detection methods (Chou et al., 2021), including photoelectric techniques (Diekhans et al., 1990), acoustic-electric methods (Liu et al., 1993; Guitersloh et al., 1990), and traditional piezoelectric approaches (Barry et al., 2021). However, these methods remain suboptimal due to complex field working conditions and difficulties in distinguishing grains from debris. Recent advancements, however, have led to mature loss monitoring technologies based on piezoelectric effects. These innovations are now widely adopted, as piezoelectric films and ceramics are extensively used in loss sensors, coupled with continuous improvements in signal processing and algorithm optimization. Table 1 provides a classification and feature analysis of loss monitoring technologies. Although new piezoelectric methods have reached maturity, room for improvement still exists. Future research could focus on optimizing material composition and structural design of piezoelectric components to enhance stability in complex environments. Additionally, developing multimodal monitoring systems integrating other sensor technologies (such as photoelectric or acoustic-electric methods) may represent a promising direction for future development, addressing limitations of single-technology approaches.

Table 1
Classification and analysis of grain loss monitoring technology

Technological means	Monitoring methods	Technical feature
Photoelectric method	The valley flows out to block the light source, thereby showing the amount of loss	It is difficult to identify the simultaneous fall of multiple grains and to classify the grains and residues
Electroacoustic method	Using the acoustic identification technology, the acoustic signal of the soundboard is extracted to identify the amount of lost grain	Operation noise has a great influence on identification, and it is difficult to distinguish the acoustic signal between grain residues
Traditional piezoelectric method	The grain falls on the pressure sensor and generates an electrical signal, which can identify and classify the grain and the residue through different electrical signals	Traditional pressure sensors have poor resolution of grains, stems and residues, and long response time
New piezoelectric method	Based on the piezoelectric effect, the structure of piezoelectric elements and sensors and signal processing algorithm are optimized	The identification and classification of grains and residues are more accurate, the response speed is faster, and the mechanical vibration is less affected

The grain loss monitoring system employs a piezoelectric-based multi-level sensing-processing-feedback framework (Wang et al., 2025; Xing et al., 2025). Its operational mechanism comprises three core components. The physical sensing layer captures mechanical vibration signals generated by grain impacts through optimized array/cross-shaped piezoelectric plates (PVDF film or PZT ceramic materials). Combined with vibration-resistant bases and precise positioning at the cleaning system outlet, it differentially detects grain signals from debris impacts. The signal processing layer converts weak piezoelectric signals into electrical signals (Chen et al., 2024) via charge amplification circuits. After filtering out mechanical noise through band-pass filters, temporal-frequency domain features are extracted. Machine learning algorithms establish nonlinear classification models (Qiu et al., 2023) to accurately distinguish between seeds and debris components like husks and stalks. The data optimization layer integrates real-time monitoring modules to calculate loss rates while synchronizing with harvester parameters (e.g., operating speed). Through feedback control, it dynamically adjusts cleaning device airflow velocity or cutter platform height to maintain loss rates within controllable ranges. This system achieves online monitoring and intelligent regulation of harvesting losses through material-structure-algorithm synergy, providing technological support for food security.

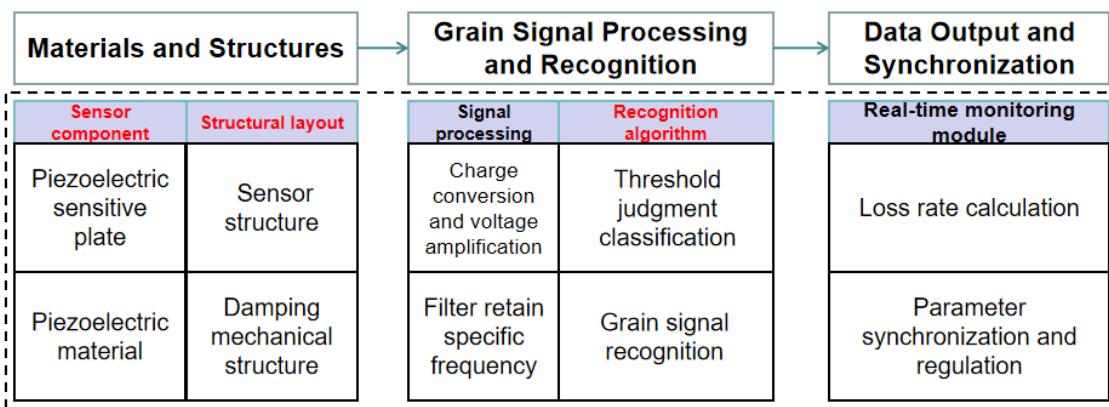


Fig. 1 – Flowchart of grain loss monitoring technology

Based on the technical principle of grain loss monitoring device, this paper selects three key aspects that affect the accuracy of loss monitoring: sensor component material, sensor structure and grain recognition signal processing algorithm for integrated analysis, and puts forward the existing problems in each aspect and the direction of optimization and improvement.

LOSS OF SENSOR MATERIALS

Piezoelectric element

Currently, piezoelectric components used for grain loss monitoring mainly include two types: piezoelectric ceramics and piezoelectric films. Piezoelectric films offer advantages such as high sensitivity, lightweight design, and flexible structure (Huang et al., 2024). The piezoelectric coefficient of PVDF is 10-20 times that of traditional piezoelectric ceramics, enabling it to capture weak signals (such as single-grain impacts) with a wide response frequency range (40Hz to several kHz). Piezoelectric films exhibit faster attenuation rates than traditional ceramics, making them suitable for high-speed cleaning scenarios. PVDF films are soft and can adhere to complex surfaces while being lightweight, ideal for integration into the confined spaces of combine harvesters (Xu et al., 1999). Yilmaz D et al., (1999), used PVDF piezoelectric films to monitor chickpea separation loss, demonstrating a correlation between monitoring accuracy and chickpea moisture content. In China, Li Junfeng and Zhou Liming also employed PVDF films as piezoelectric components in grain loss sensors, achieving monitoring errors within 5% (Li et al., 2008; Li et al., 2009; Zhou et al., 2010). However, PVDF films are susceptible to interference from combine harvester vibrations and stalk debris impacts, requiring complex signal filtering. Additionally, PVDF films have environmental sensitivity defects (Li et al., 2011): high temperatures may cause piezoelectric effect failure, high humidity may lead to short circuits or signal attenuation, and prolonged impact may result in fatigue fractures, limiting their stability.

Piezoelectric ceramics demonstrate exceptional piezoelectric properties, with a d33 value reaching up to 600pC/N (Gai et al., 2025; Liu et al., 2025; Li et al., 2025). Their high plasticity allows customization into various shapes to meet diverse application requirements. Featuring a high Curie temperature (over 300°C for some types), these materials maintain performance at 80°C with only a 15% decrease (Lu et al., 2025; Wu et

al., 2018). Their cost-effectiveness makes them ideal for mass production. However, significant limitations exist: the rigid bulk material often struggles to conform to irregular surfaces, and their typical thickness of 0.5-2 mm may impair high-frequency signal capture. Additionally, their relatively low dielectric strength (Fei et al., 2010) causes polarization loss under strong electric fields of 75V/μm, requiring complex packaging solutions like vibration-damping rubber to suppress mechanical noise.

Table 2

Analysis and comparison of characteristics between piezoelectric film and ceramic

Application perspective	Piezoelectric film	Piezoelectric ceramics
Complex curved surface environment	Flexible design is suitable for a variety of complex scenarios	Rigid structures are difficult to fit
High temperature and humidity environment	Piezoelectric effect is prone to failure, waterproof packaging is required	High temperature resistant, waterproof packaging is required
Large scale production	Costly	Low cost
Strong electric field effect	Resistant to electric fields	Easy to depolarize

In summary, as shown in Table 2, while piezoelectric thin-film sensors demonstrate superior piezoelectric coefficients and faster response speeds, their performance remains highly sensitive to temperature and humidity fluctuations. These environmental factors can cause instability in sensor performance, leading to measurement inaccuracies. Conversely, although piezoceramic materials exhibit longer decay times, they offer greater stability and lower costs. Both material types face limitations in versatility, with current sensors primarily designed for specific crops and requiring improvements in cross-condition adaptability and interference resistance. Future research may explore novel materials with high Curie temperatures (e.g., $\geq 100^{\circ}\text{C}$), high piezoelectric coefficients, and excellent humidity resistance (Liu et al., 2025), or enhance the weather resistance of PVDF films through surface modification techniques to address performance degradation issues in high-temperature and high-humidity environments.

Impact sensitive plate

Impact-sensitive plates are a critical factor affecting the monitoring speed of grain loss. When rice grains fall onto different impact-sensitive plates, the signal attenuation rates vary significantly. Moreover, the first-order natural frequency of different plate materials inversely correlates with detection speed – higher natural frequencies enable faster detection (Zhang et al., 2019; Wang et al., 2021). Additionally, plate thickness impacts vibration frequency and amplitude: increased thickness enhances natural frequency and sensitivity but simultaneously reduces recognition accuracy, making it difficult to distinguish grain signals from other interference signals (Tang et al., 2017). Current products primarily use 304 stainless steel or copper-clad bakelite as materials for impact-sensitive plates. Liang Zhenwei (Li et al., 2013; Liang et al., 2018; Liang et al., 2015; Liang et al., 2014) tested peak contact forces between three materials (stainless steel, aluminum, and brass) and rice grains, ultimately selecting 1 mm-thick 304 stainless steel plates. Liu Yangchun (Liu et al., 2023) conducted modal analysis of impact-sensitive plates, concluding 0.5 mm-thick 304 stainless steel was optimal. Commercialized products like those from Kais and Rayo (a leading manufacturer) typically employ copper-clad bakelite as materials for impact-sensitive plates, achieving excellent monitoring performance.

Fig. 2 – Copper-clad impact-sensitive laminate

However, existing designs exhibit significant limitations: Firstly, sensitive plate parameters (material and thickness) have not been systematically optimized for crop-specific characteristics (e.g., differences in grain hardness between rice and wheat), making it challenging to balance natural frequency with recognition accuracy.

While increased thickness enhances sensitivity, it reduces resolution and complicates the differentiation between grain signals and interference noise. Secondly, in complex operational environments (such as varying impact angles and velocities of grains), current sensitive plates are susceptible to mechanical vibrations and background noise, further compromising signal stability.

To address these issues, future innovations should focus on two key approaches:

1. Dynamic parameter optimization model: Establish a "crop-sensitive plate" matching model using machine learning to predict optimal thickness and material combinations based on historical data. For instance, Ding Li's team (*Ding et al., 2023*) utilized EDEM simulations to analyze the mechanical properties of wheat and straw impacting sensitive plates, providing theoretical foundations for parameter optimization.

2. Adaptive sensitive plate design: Develop flexible structures with adjustable stiffness or damping capabilities, such as layered composite materials (e.g., metal substrate + elastic coating) or intelligent actuation components, to accommodate diverse crops and operational scenarios.

LOSS OF SENSOR STRUCTURE

Array sensor structure

Current mature products typically employ a piezoelectric element combined with a conditioning circuit. While capable of detecting grain loss, the large sensing area makes it difficult to identify individual counts when multiple grains fall simultaneously. To address this challenge, researchers have developed array-based sensing structures by increasing the number of piezoelectric elements while reducing the required sensing area per unit. Zhou *et al.*, (2010), implemented an array sensor for grain loss monitoring, with each sensor element equipped with its own dedicated signal processing circuit to prevent interference between components. As shown in Figure 3, Zhao Zhan and Ni Jun (*Zhao et al., 2013; Ni et al., 2010; Ni et al., 2015*) also designed similar sensor configurations, significantly enhancing detection accuracy during high-frequency impact testing of grains.

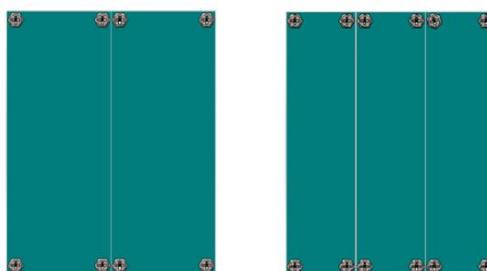


Fig. 3 – Schematic diagram of array sensor structure

Symmetrical sensor structure

In combine harvester operations, the number of grain particles at the cleaning outlet is significantly lower compared to residual debris. Without effective signal attenuation, sensors would struggle to distinguish between grain signals and interference noise. To address this, Mao *et al.*, (2012), developed a symmetrical sensor structure combining two vertically aligned piezoelectric elements with identical dimensions, materials, and excitation responses. By implementing vibration compensation between the upper and lower sensors, this design enhances signal differentiation between straw debris and grain particles. While this approach effectively reduces interference, it requires precise matching of performance parameters between the piezoelectric elements, resulting in higher manufacturing complexity.

Double layer cross structure

In 2016, Bischoff *et al.*, (2016), developed a sensor capable of detecting seed impact positions. This innovative design utilizes two conductive layers to identify X and Y coordinates of seeds. The concept was later implemented in China by Sun Ying and her team (*Sun et al., 2018*), who named the sensor structure the "Dual-Layer Cross Structure". As shown in Figure 4, the sensor leverages the energy-conducting properties of multi-layer PVDF piezoelectric films, dividing the sensing unit into upper and lower layers: the upper layer for X-axis sensing and the lower layer for Y-axis sensing. When multiple seeds land simultaneously, the system distinguishes them through distinct XY coordinate data, achieving effective loss monitoring. The theoretical framework of this structure enhances detection accuracy, offering a novel approach for developing loss-monitoring sensor architectures.

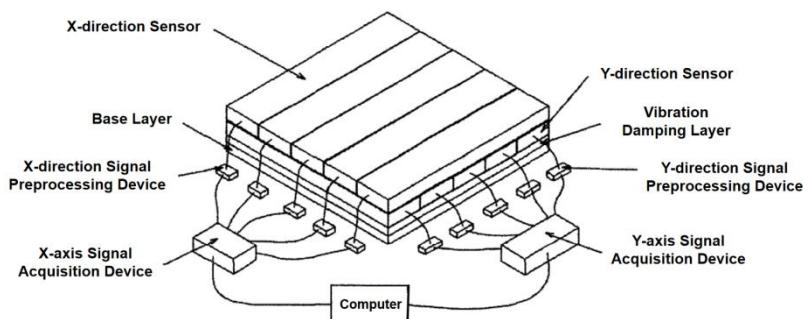


Fig. 4 –Double layer cross structure

In the design of sensor structures for grain loss monitoring, current mainstream technologies still exhibit significant shortcomings:

1. Traditional single piezoelectric element and conditioning circuit structures, while cost-effective, struggle to accurately identify the specific number of grains during simultaneous descent due to excessive sensing area, only providing rough loss trend indicators;
2. Array sensors reduce individual sensing unit size by increasing piezoelectric elements (e.g., 4×4 PVDF arrays), which enhances monitoring accuracy under high-frequency impacts but requires separate signal processing circuits for each element, resulting in complex systems, bulky designs, and increased costs. Insufficient signal isolation between elements may also cause cross-interference issues;
3. Symmetrical structures distinguish grain signals from residual noise through vibration compensation of upper/lower piezoelectric elements, significantly suppressing interference, but demand strict material, dimensional, and response characteristic matching between layers, complicating manufacturing processes and hindering mass production;
4. The dual-layer cross structure theoretically captures grain collision position information through upper/lower conductive films, breaking the bottleneck of multi-target recognition, yet relies on high-precision multi-layer PVDF film processing technology, leading to exorbitant manufacturing costs. Currently limited to laboratory simulations, it lacks reliability and durability verification under complex field environments, with unclear practical application prospects.

To address these challenges, future innovations can be pursued through multiple dimensions: for instance, developing automated calibration systems tailored to specific structures that dynamically match parameters of upper and lower piezoelectric components during production, thereby reducing process precision requirements; adopting scalable modular array designs to miniaturize sensor units while enabling flexible networking through standardized interfaces to simplify system complexity; utilizing self-isolated signal transmission technology to suppress electromagnetic interference caused by insufficient component isolation. Ultimately, this approach will create sensor solutions that combine low cost, high reliability, and strong environmental adaptability.

Seed recognition signal processing algorithm model

Grain loss monitoring sensors primarily achieve grain identification through signal processing system adjustments. The current piezoelectric sensor signal processing generally follows the classic "amplification-filtering-feature extraction" workflow. A pre-stage charge amplifier converts weak electrical signals into voltage signals, while two-stage filtering retains the characteristic frequency of grain impact (Xu et al., 2019; Li et al., 2022). However, traditional methods rely on fixed thresholds for signal judgment, making them sensitive to grain types, moisture content, and installation height, requiring frequent manual calibration (Lian et al., 2021). This demonstrates that simple amplification circuits cannot meet high-precision monitoring requirements under complex conditions. Therefore, researchers worldwide have proposed various algorithm models to process electrical signals from piezoelectric sensors for more accurate grain loss rate prediction (Li et al., 2024). As shown in Figure 5, Craessaerts et al., (2010), developed a nonlinear model by measuring pressure differences and load quantities at different positions behind cleaning screens to predict grain loss rates. Meanwhile, Hiregoudar et al., (2011), established an artificial neural network algorithm using harvest time, width, and moisture content as input parameters, significantly improving prediction accuracy. In the same year, Gao et al., (2011), employed a chaotic algorithm model for grain loss monitoring. Although Duffing oscillator detection systems remain susceptible to noise, they outperform traditional time-domain detection methods in grain loss monitoring, offering a novel solution for grain recognition systems (Yang et al., 2021).

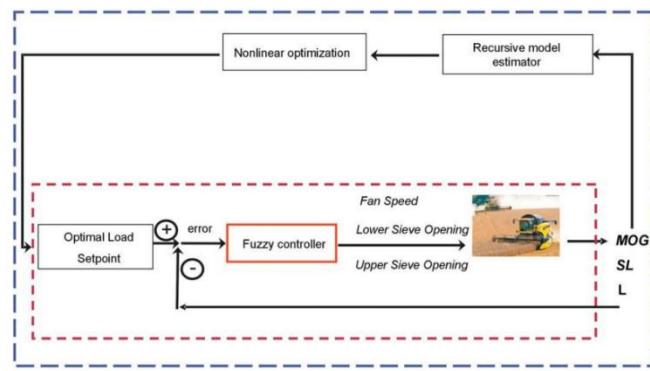


Fig. 5 – Nonlinear algorithm model

In grain loss monitoring, the limited availability of sampling equipment, monitoring conditions, and crop varieties often results in a relatively small number of usable samples, commonly referred to as "small sample scenarios". The piezoelectric sensors commonly used in grain loss monitoring operate based on nonlinear physical effects, while the data from such monitoring inherently exhibits nonlinear characteristics. Traditional linear processing methods cannot accurately reflect the true extent of grain loss, placing grain loss monitoring in a small-sample, nonlinear operational environment. Domestic research on grain recognition algorithms continues to advance. To address the complex conditions of grain identification, scholars including Cao Rui, Che Dong, Lian Yi, and Niu Caoyuan (Cao et al., 2019; Che et al., 2019; Lian et al., 2020; Niu et al., 2023) have developed various approaches such as majority decision, SVM (Support Vector Machine), decision trees, and WOA-BP for grain recognition. These methods aim to achieve faster response speeds, higher recognition accuracy, and broader applicability in signal identification and counting. As shown in Table 3, each algorithm demonstrates distinct advantages.

Table 3

Particle recognition effect of some algorithm models

Grain recognition algorithm model	Mean relative error of grain recognition (%)	Maximum relative error of grain recognition (%)	Monitoring period (s)
SVM	15.00	17.00	4
Decision Tree	7.28	11.82	2
WOA-BP	6.23	8.47	3

While current signal recognition and counting algorithm models have demonstrated promising results, they still face multiple limitations.

1. Insufficient sample size and generalization capability: Existing algorithms (e.g., SVM, decision trees) primarily rely on limited laboratory or specific operational samples, making them inadequate for diverse field environments such as straw occlusion, grain aggregation, and varying collision angles. For instance, SVM maintains stability with small datasets but shows sensitivity to noise and struggles to effectively model nonlinear distortions in piezoelectric signals (e.g., amplitude fluctuations caused by different collision angles).

2. Inadequate nonlinear feature modeling: Piezoelectric sensor signals are inherently nonlinear dynamic systems. However, traditional linear algorithms depend on manual feature engineering, failing to capture higher-order nonlinear correlations. For example, the nonlinear characteristics of contact force variation curves during wheat grain-stubble impact on sensitive plates remain underutilized.

3. Insufficient dynamic adaptability: Although existing models possess strong search capabilities, their high parameter sensitivity makes them ill-suited for dynamic conditions like feeding rates and grass-to-hull ratio variations in combine harvesters. EDEM simulations reveal that wheat grain recognition accuracy reaches 98.4% at 300 mm height, but actual field height fluctuations may amplify errors.

Based on these findings, this paper proposes feasible algorithmic innovation directions for reference.

1. Multi-source algorithm fusion enhances model adaptability: By integrating chaotic algorithm preprocessing with deep learning classification, this hybrid model leverages the chaotic algorithm's strong sensitivity to nonlinear signals under small sample conditions and deep learning's autonomous feature

extraction capabilities, achieving robustness in dynamic operating environments while maintaining deep feature modeling depth.

2. Transfer learning strengthens generalization: Utilizing collision mechanics data generated by Discrete Element Method (DEM) or Finite Element Method (FEM) simulations combined with limited field measurement data for transfer learning effectively mitigates small-sample limitations. For instance, Liu Xiaohang's team demonstrated the feasibility of their transfer learning-based corn kernel detection model maintaining high accuracy even in occlusion scenarios.

3. Deep integration of physical mechanisms and data-driven approaches: Establishing nonlinear dynamic models based on piezoelectric collision mechanics combined with machine learning for non-stationary signal modeling overcomes limitations of traditional linear feature engineering.

4. Reinforcement learning dynamically adapts to operational fluctuations: Introducing reinforcement learning to adjust model parameters online addresses dynamic parameter variations in combine harvester operations, while compensating for single-sensor limitations through multi-sensor data fusion (light, acoustic, and pressure signals), thereby enhancing model stability under complex operating conditions.

PROBLEMS AND PROSPECTS OF GRAIN LOSS MONITORING TECHNOLOGY

Exploration and composites of piezoelectric element materials

Piezoelectric components in grain loss monitoring face limitations including environmental adaptability and material constraints. PVDF films are susceptible to interference from high humidity and mechanical vibrations. While piezoelectric ceramics exhibit superior stability, they demonstrate slower response speeds and require complex packaging processes (Mangi *et al.*, 2025). Innovation in piezoelectric materials should focus on multidimensional breakthroughs: Composite sensing technology that combines advantages of piezoelectric and piezoresistive materials (Nauman, 2021), enhancing signal acquisition efficiency through array-based layouts while reducing noise interference; and development of novel materials with high Curie temperatures (e.g., $\geq 100^{\circ}\text{C}$) and humidity-resistant piezoelectric properties to overcome existing material performance bottlenecks (Fang *et al.*, 2025; Zhao *et al.*, 2025).

Impact sensitive plate research and development and model construction

The impact-sensitive plate in grain loss monitoring faces three core challenges: Current material and thickness parameters for sensitive plates have not been systematically optimized for crop-specific characteristics (e.g., differences in grain hardness between rice and wheat), making it difficult to balance natural frequency with recognition accuracy (Liang *et al.*, 2015). While increased thickness enhances sensitivity, it reduces resolution and complicates the differentiation between grain signals and interference noise (Ni *et al.*, 2015). Moreover, in complex operational environments, existing sensitive plates are susceptible to mechanical vibrations and background noise, further compromising signal stability (Rossi *et al.*, 2023). To address these issues, future innovation directions include: establishing crop-sensitive plate parameter matching models for dynamic optimization (Chen *et al.*, 2024); developing adaptive sensitive plates that adjust stiffness or damping characteristics dynamically to adapt to diverse crops and operational conditions, thereby enhancing monitoring robustness (Du *et al.*, 2025).

Innovations in the structure of loss monitoring sensors

In the structural design of grain loss monitoring sensors, current mainstream technologies face the following core challenges: traditional single-piezoelectric structures have large sensing areas but low accuracy for multi-grain recognition; array configurations improve precision but increase complexity and costs due to multi-circuit integration (Qu *et al.*, 2024); symmetrical structures require strict performance matching between upper and lower piezoelectric elements, making mass production difficult; double-layer cross-structured designs rely on precision multilayer film processing, which is costly and lacks field validation (Sun *et al.*, 2017). To address these issues, future solutions could adopt modular array designs combined with flexible circuit board technology to enhance signal integration and reduce hardware redundancy (Ullah *et al.*, 2024; Yan *et al.*, 2024); optimize manufacturing parameters through finite element simulations (e.g., grain collision dynamics modeling and structural stress analysis); simplify multi-layer structure fabrication by introducing 3D printing technology (Yuan *et al.*, 2023; Wolstrup *et al.*, 2025); establish standardized testing platforms based on real-field operations to systematically verify environmental adaptability and stability of new sensors, thereby accelerating industrialization (Wolstrup *et al.*, 2025; Yan *et al.*, 2024).

Fusion and coordination of grain signal recognition algorithm

In the field of grain kernel signal recognition, selecting small sample and nonlinear algorithm models as solutions can yield good results. However, due to limitations such as algorithmic constraints, instability,

overfitting, and parameter sensitivity, no single model can perfectly adapt to the specific scenario of grain loss monitoring. The core challenge for current algorithms lies in the dual constraints of small samples and nonlinearity, necessitating innovation through deep integration of physical mechanism modeling and data-driven learning (Castillo-Girones et al., 2025). Future researchers could combine multi-source algorithms (e.g., chaotic algorithm preprocessing + deep learning classification), adopt transfer learning techniques to leverage existing datasets for enhanced generalization capabilities in complex field operations (Hossen et al., 2025), and utilize interdisciplinary approaches with hardware co-design to overcome limitations of single algorithms, achieving high-precision adaptive monitoring under complex conditions (El Sakka et al., 2025). With the deep integration of digital technologies and agricultural equipment, grain loss monitoring technology will inevitably advance toward higher precision, stronger robustness, and lower costs. Through interdisciplinary innovations spanning materials science, information science, and agronomy, this field will provide solid technical support for China's implementation of the "Grain Storage in Technology" strategy and food security assurance.

ACKNOWLEDGEMENT

The authors were funded for this project by the Research on intelligent control technology of high performance combine harvester with large feeding capacity (No.2021YFD200050302)

REFERENCES

- [1] Anonymous. (1975). *Grain loss measurer for combine harvester—uses grain flow to interrupt light to sensor in duct* (UK Patent No. GB1401878-A). United Kingdom Patent Office.
- [2] Barry D.B., Joshua N.G., & Nystuen P.A. (2014). *System and method for determining material yield and/or loss from a harvesting machine using acoustic sensors* (Patent). Google Patents.
- [3] Bischoff L., Pfeiffer D.W., & Phelan J.J. (2016). *Particulate matter impact sensor* (Patent). Google Patents.
- [4] Bomo M.I., Nawi N.M., Abd Aziz S., & Mohd Kassim M.S. (2022). Sensing technologies for measuring grain loss during harvest in paddy field: A review. *AgriEngineering*, 4(1), 292–310. <https://doi.org/10.3390/agriengineering4010020>
- [5] Cao R. (2019). *Research on multi-channel PVDF piezoelectric film grain loss sensor signal processing system based on DSP* (基于 DSP 的多通道 PVDF 压电薄膜谷物损失传感器信号处理系统研究) [Doctoral dissertation]. Zhejiang University, Hangzhou, China.
- [6] Castillo-Girones S., Munera S., Martínez-Sober M., Blasco J., Cubero S., & Gómez-Sanchis J. (2025). Artificial neural networks in agriculture: The core of intelligent signal processing in complex environments. *Computers and Electronics in Agriculture*, 230, 109938. <https://doi.org/10.1016/j.compag.2025.109938>
- [7] Chang F. (2007). Discussion on causes and countermeasures of grain loss in combine harvester operation (联合收获机作业中谷物损失的原因及对策探讨). *Contemporary Agricultural Machinery*, (6), 74.
- [8] Che D. (2019). *Control and implementation of cleaning system for corn grain combine harvester* (玉米谷物联合收获机清选系统的控制与实现) [Doctoral dissertation]. Northeastern University, Shenyang, China.
- [9] Chen H.Y., Lv Q., & Fu Q.Y. (2024). Optimal design of threshing and separating device for longitudinal twin-axial flow grain combine harvester (纵向双轴流谷物联合收获机脱粒分离装置优化设计). *Modern Agricultural Machinery*, (5), 120–123.
- [10] Chen Y., Zhang X., & Lu C. (2024). Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. *Chemical Science*, 15(10), 1234–1256. <https://doi.org/10.1039/D4SC05166A>
- [11] Chen Q. (2019). Food supply and demand situation in China in the new era and new challenges (新时代我国粮食供求形势与新挑战). *China Development Observation*, (7), 35–37.
- [12] Craessaerts G., Saeys W., & Missotten B. (2009). Identification of the cleaning process on combine harvesters, Part II: A fuzzy model for prediction of the sieve losses. *Biosystems Engineering*, 106(2), 97–102. <https://doi.org/10.1016/j.biosystemseng.2009.01.002>
- [13] Ding L., Xu Y.F., Qu Z., Dou Y.F., Wang W.Z., & Li H. (2023). Design of monitoring test device for cleaning loss of wheat harvester based on EDEM (基于 EDEM 的小麦收获机清选损失监测试验装置设计). *Journal of Chinese Agricultural Mechanization*, 44(3), 13–21. <https://doi.org/10.13733/j.jcam.issn.2095-5553.2023.03.003>

[14] Du M., Zhao H., Zhang S., Li C., Chu Z., Liu X., & Cao Z. (2025). Design and optimization of a vibration-assisted crop seed drying tray with real-time moisture monitoring. *Applied Sciences*, 15(7), 3968. <https://doi.org/10.3390/app15073968>

[15] El Sakka M., Mohan V., & Ghariani R. (2025). A review of CNN applications in smart agriculture using image-based data. *Sensors*, 25(2), 472. <https://doi.org/10.3390/s25020472>

[16] Fang W., Li Y., Zhang X., & Liu J. (2025). Ultra-high temperature piezoelectric crystals: Properties, challenges and prospects. *Progress in Crystal Growth and Characterization of Materials*, 81(1), 101134. <https://doi.org/10.1016/j.pcrysgrow.2025.101134>

[17] Food and Agriculture Organization of the United Nations. (2019). *The State of Food and Agriculture 2019: Moving forward on food loss and waste reduction*. FAO. <https://www.fao.org/interactive/state-of-food-agriculture/2019/en/>

[18] Gao J.M., Zhang G., Yu L., & Li Y.B. (2011). Chaotic detection of grain impact signals from cleaning loss sensors of combine harvesters (联合收获机清选损失传感器谷物冲击信号的混沌检测). *Transactions of the Chinese Society of Agricultural Engineering*, 27(9), 22–27.

[19] Gai X.Z., Wu F., Wang Y.Q., Li W., & H C. (2025). Preparation and properties of $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ – $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ – $\text{Pb}(\text{ZrTi})\text{O}_3$ large strain piezoelectric ceramics ($\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ – $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ – $\text{Pb}(\text{ZrTi})\text{O}_3$ 大应变压电陶瓷的制备与性能). *Journal of Functional Materials*, 56(2), 2010–2017.

[20] Guitersloh N.D., & Steinhagen W.B. (1990). *Lost-grain detector for harvesting machine* (U.S. Patent No. 4,958,511). United States Patent and Trademark Office.

[21] Hiregoudar S., Udhaykumar R., Ramappa K.T., Shreshta B., Meda V., & Anantachar M. (2011). Artificial neural network for assessment of grain losses for paddy combine harvester: A novel approach. *Proceedings of the International Conference on Logic, Information, Control and Computation*, Berlin, Germany.

[22] Hossen M.I., Awrangjeb M., Pan S., & Mamun A.A. (2025). Transfer learning in agriculture: A review. *Artificial Intelligence Review*, 58(1), 97. <https://doi.org/10.1007/s10462-024-11081-x>

[23] Huang R., Chen H.R., Li Y.H., Xue M.H., Fu H., Zheng S.G., Zhang Y.J., & Mang W.H. (2024). Design of flexible piezoelectric film sensor (柔性压电薄膜传感器的设计). *Machinery Manufacturing*, 62(7), 54–59, 91.

[24] International Organization for Standardization. (2018). *Occupational health and safety management systems—Requirements with guidance for use (ISO Standard No. 45001:2018)*. <https://www.iso.org/standard/63787.html>

[25] Jiangsu University. (2023). *Doctoral dissertations on grain loss monitoring systems in combine harvesters*. Jiangsu, China.

[26] Li D., Zhang J., He X., Liu H., & Sun D. (2022). Analyzing rice grain collision behavior and monitoring sieve losses based on FEM and circuit parameter optimization. *Agriculture*, 12(6), 839. <https://doi.org/10.3390/agriculture12060839>

[27] Li H.Y., Wang G.C., Xu P., & Li Y.J. (2025). Research on structural optimization and measurement performance of high-temperature piezoelectric force sensor (高温压电传感器结构优化与测量性能研究). *Shandong Industrial Technology*, (1), 25–31.

[28] Li J.F., & Zhao G.Q. (2008). Virtual test system for PVDF grain loss sensor (PVDF 谷物损失传感器的虚拟测试系统). *Journal of Agricultural Mechanization Research*, (10), 109–111.

[29] Li J.F., Zheng X.F., & Pei Y.H. (2009). Research on PVDF grain loss sensor (PVDF 谷物损失传感器研究). *Journal of Agricultural Mechanization Research*, 31(3), 223–225.

[30] Li Y., Cui Z., Li Y., Lv L., Shi M., & Yu X. (2024). Design and validation of a novel maize grain cleaning loss detection system using time-domain particle signals and machine learning. *Computers and Electronics in Agriculture*, 220, 108908. <https://doi.org/10.1016/j.compag.2024.108908>

[31] Li Y.M., Liang Z.W., Zhao Z., & Chen Y. (2011). Research on real-time monitoring system for grain loss of combine harvesters (联合收获机谷物损失实时监测系统研究). *Transactions of the Chinese Society for Agricultural Machinery*, 42(S1), 99–102.

[32] Li Y.M., Liang Z.W., & Zhao Z. (2013). Vibration characteristics and experiment of sensitive plate of grain loss monitoring sensor (谷物损失监测传感器敏感板振动特性与试验). *Transactions of the Chinese Society for Agricultural Machinery*, 44(10), 104–111.

[33] Liang Z.W. (2018). *Research on design method of multi-air duct cleaning device and monitoring & control technology for cleaning loss* (多风道清选装置设计方法与清选损失监控技术研究) [Doctoral dissertation]. Jiangsu University, Zhenjiang, China.

[34] Liang Z.W., Li Y.M., Zhao Z., & Xu L.Z., Tang Z., (2015). Study on mathematical model for monitoring grain cleaning loss in longitudinal axial flow combine harvesters (纵轴流联合收获机籽粒清选损失监测数学模型研究). *Transactions of the Chinese Society for Agricultural Machinery*, 46(1), 106–111.

[35] Liang Z., Li Y., Zhao Z., & Xu L. (2015). Structure optimization of a grain impact piezoelectric sensor and its application for monitoring separation losses on tangential-axial combine harvesters. *Sensors*, 15(1), 1496–1517. <https://doi.org/10.3390/s150101496>

[36] Lian Y. (2020). *Research on adaptive control system for operating parameters of threshing device in rice and wheat combine harvesters* (稻麦联合收获机脱粒装置作业参数自适应控制系统研究) [Doctoral dissertation]. Jiangsu University, Zhenjiang, China.

[37] Lian Y., Zhang Z., Wang J., & Chen X. (2021). Development of a monitoring system for grain loss of paddy combine harvester using decision-tree based kernel recognition. *International Journal of Agricultural and Biological Engineering*, 14(5), 198–207. <https://doi.org/10.25165/j.ijabe.20211401.5731>

[38] Liu C., & Leonard J. (1993). Monitoring actual grain loss from an axial flow combine in real time. *Computers and Electronics in Agriculture*, 9(3), 231–242. [https://doi.org/10.1016/0168-1699\(93\)90041-X](https://doi.org/10.1016/0168-1699(93)90041-X)

[39] Liu K.S. (2008). Reasons for increased grain loss during operation of rice combine harvesters and prevention measures (水稻联合收获机作业中谷物损失增加的原因及预防措施). *Hunan Agricultural Machinery*, (6), 31.

[40] Liu P., Wang X., & Jin C. (2023). Research on the adaptive cleaning system of a soybean combine harvester. *Agriculture*, 13(11), 2085. <https://doi.org/10.3390/agriculture13112085>

[41] Liu X.Y., Chen J., & Zhang X.L. (2020). Development of cleaning loss monitoring device for combine harvester based on STM32 (基于 STM32 的联合收获机清选损失监测装置开发). *Journal of Agricultural Mechanization Research*, 42(10), 200–204, 210. Heilongjiang, China.

[42] Liu Y., Li Y., He X., Liu X., Ye Y., & Chen Y. (2025). Research progress of PVDF composites based on ionic liquids in sensing and actuation fields (离子液体基 PVDF 复合材料在传感与驱动领域的研究进展). *Journal of Chongqing University of Science and Technology (Natural Science Edition)*, 27(1), 28–36. Chongqing, China.

[43] Liu Y.C., Li M.H., Wang J.Z., Feng L., Wang F.Z., & He X.L. (2023). Design and experiment of entrainment loss detection system for corn grain direct harvesting machine (玉米籽粒直收机夹带损失检测系统设计与试验). *Transactions of the Chinese Society for Agricultural Machinery*, 54(5), 140–149. <https://doi.org/10.6041/j.issn.1000-1298.2023.05.014>

[44] Lu M.X., Zhou L.Y., Xu X.Y., Feng X.Y., Wang H., Yan B., Xu J., Chen C., Mei H., & Gao F. (2025). Preparation of La-doped Pb-based piezoelectric ceramics with high electrostrictive strain and high Curie temperature (兼具高电致应变和居里温度 La 掺杂铅基压电陶瓷的制备). *Chinese Journal of Inorganic Chemistry*, 41(2), 329–338. <https://doi.org/10.11862/CJIC.20240206>

[45] Mao H.P., Liu W., Han L.H., & Zhang X.D. (2012). Development of grain cleaning loss monitoring device with symmetric sensing structure (对称传感结构的谷物清选损失监测装置研制). *Transactions of the Chinese Society of Agricultural Engineering*, 28(7), 34–39.

[46] Mangi M.A., Abro Z.A., Mugheri A.Q., Kumar S., & Unar I.N. (2025). Applications of piezoelectric-based sensors, actuators, and energy systems: A review. *Sensors and Actuators Reports*, 7, 100233. <https://doi.org/10.1016/j.snr.2025.100233>

[47] Nauman S. (2021). Piezoresistive sensing approaches for structural health monitoring and composite design. *Infrastructures*, 6(2), 13. <https://doi.org/10.3390/infrastructures6020013>

[48] Nath B., Chen G., O'Sullivan C.M., & Zare D. (2024). Research and technologies to reduce grain postharvest losses: A review. *Foods*, 13(12), 1875. <https://doi.org/10.3390/foods13121875>

[49] Ni J., Mao H.P., & Li P.P. (2010). Design of grain cleaning loss monitor with array piezoelectric crystal sensor (阵列压电晶体传感器谷物清选损失监测仪设计). *Transactions of the Chinese Society for Agricultural Machinery*, 41(8), 175–177.

[50] Ni J., Mao H.P., Pang F., Zhu Y., Yao X., & Tian Y. (2015). Design and experimentation of piezoelectric crystal sensor array for grain cleaning loss. *International Journal of Distributed Sensor Networks*, 11(7), 754278. <https://doi.org/10.1155/2015/754278>

[51] Nie X. (2021). *Design and implementation of online detection software system for harvesting loss of rice and wheat combine harvesters* (稻麦联合收获机收获损失在线检测软件系统设计与实现) [Doctoral dissertation]. Zhejiang University, Hangzhou, China.

[52] Niu C.Y. (2023). *Research on grain loss monitoring method of rice combine harvester based on WOA-BP* (基于 WOA-BP 的水稻联合收获机谷物损失监测方法研究) [Doctoral dissertation]. Jiangsu University, Zhenjiang, China.

[53] Pei X.R., & Gao H.R. (2010). Research and application status of piezoelectric materials (压电材料的研究与应用现状). *Anhui Chemical Industry*, 36(3), 4–6, 10. Anhui, China.

[54] Qiu J. (2021). *Design and experiment of adaptive control system for rapeseed cleaning loss* (油菜清选损失自适应控制系统设计与试验) [Doctoral dissertation]. Jiangsu University, Zhenjiang, China.

[55] Qiu Q.Y. (2023). *Design and experiment of cleaning device for both soybean and corn and loss monitoring device* (大豆玉米兼用清选装置及损失监测装置设计与试验) [Doctoral dissertation]. Sichuan Agricultural University, Ya'an, China.

[56] Qu Z., Lu Q., Shao H., Le J., Wang X., Zhao H., & Wang W. (2024). Design and test of a grain cleaning loss monitoring device for wheat combine harvester. *Agriculture*, 14(5), 671. <https://doi.org/10.3390/agriculture14050671>

[57] Qing Y., Chen L., Chen D., Wang P., Sun W., & Yang R. (2024). Simulation and optimization of a self-cleaning device for the header of a rice seed harvester using Fluent–EDEM coupling. *Agriculture*, 14(12), 2312. <https://doi.org/10.3390/agriculture14122312>

[58] Rossi S., Gai M., & Balsari P. (2023). Improving the seed detection accuracy of piezoelectric impact sensors for precision seeders. *Computers and Electronics in Agriculture*, 208, 107783. <https://doi.org/10.1016/j.compag.2023.107783>

[59] Shi G.C., Kong Y.F., Xu W.Q., & Wang J.H. (1998). Causes and countermeasures of grain loss in combine harvesters (联合收获机谷物损失的原因与对策). *Rural Practical Technology and Information*, (12), 29. Hubei, China.

[60] Sun Y. (2018). *Study on basic characteristics of double-layer cross-type particle collision sensor based on PVDF piezoelectric film* (基于 PVDF 压电薄膜的双层十字型颗粒碰撞传感器基本特性研究) [Doctoral dissertation]. Zhejiang University, Hangzhou, China.

[61] Sun Y., Yu Y., Tian H., Qian X., & Wang J. (2017). Design and modeling of grain impact sensor utilizing two crossed polyvinylidene fluoride films. *2017 ASABE Annual International Meeting*, 1700880. <https://doi.org/10.13031/aim.201700880>

[62] Tang F.L. (2017). *Design and experiment of cleaning loss monitoring device for combine harvesters* (联合收获机清选损失监测装置设计与试验) [Doctoral dissertation]. Xihua University, Chengdu, China.

[63] Wang C., Jin C.Q., Yang X.Y., Lei Z.X., Li P.P., & Zhao Z.H. (2025). Research status and development trend of screening devices for grain combine harvesters (谷物联合收获机筛分装置研究现状与发展趋势). *Journal of Chinese Agricultural Mechanization*, 46(6), 46–54.

[64] Wang F.S., & Yan F. (1999). Reasons and countermeasures for increased straw entrainment loss of Shanghai-III grain combine harvester (上海-III 型谷物联合收获机茎秆夹带损失增加的原因与对策). *Shandong Agricultural Mechanization*, (5), 13. Shandong, China.

[65] Wang Z.Y. (2021). *Design of threshing and separating device and automatic control system for entrainment loss of corn grain harvester* (玉米籽粒收获机脱粒分离装置及夹带损失自动控制系统设计) [Doctoral dissertation]. Jiangsu University, Zhenjiang, China.

[66] Wei D., Wu C., Jiang L., Wang G., & Chen H. (2023). Design and test of sensor for monitoring corn cleaning loss. *Agriculture*, 13(3), 663. <https://doi.org/10.3390/agriculture13030663>

[67] Wolstrup A.F., Spangenberg J., & Yamamoto A. (2025). Advances in 3D printed electromechanical sensors: Performance comparison, trends, and future directions. *Additive Manufacturing*, 106, 104799. <https://doi.org/10.1016/j.addma.2025.104799>

[68] Wu J.G., Gao X.Y., Chen J.G., Wang C.M., Zhang S., & Dong S. (2018). High-temperature piezoelectric materials, devices and applications (高温压电材料、器件与应用) *Acta Physica Sinica*, 67(20), 207701. <https://doi.org/10.7498/aps.67.20181091>

[69] Xu H.X., Luo Y., & Liu Z.T. (1999). Application progress of PVDF piezoelectric film (PVDF 压电薄膜的应用进展). *Journal of Jiangsu University of Science and Technology (Natural Science Edition)*, (5), 88–91. Jiangsu, China.

[70] Xu L., Wei C., Liang Z., Chai X., Li Y., & Liu Q. (2019). Development of rapeseed cleaning loss monitoring system and experiments in a combine harvester. *Biosystems Engineering*, 178, 118–130. <https://doi.org/10.1016/j.biosystemseng.2018.11.001>

[71] Xing G.Y., Ge S.C., Lu C.Y., Zhao B., Liu Y.C., & Zhou L.M. (2025). Design and experiment of cleaning loss detection system for corn grain direct harvesting machine based on VS-1D CNN (基于 VS-1D CNN 的玉米籽粒直收机清选损失检测系统设计与试验). *Transactions of the Chinese Society for Agricultural Machinery*, 56(2), 206–216.

[72] Yan B., Zhang F., Wang M., Zhang Y., & Fu S. (2024). Flexible wearable sensors for crop monitoring: A review. *Frontiers in Plant Science*, 15, 1406074. <https://doi.org/10.3389/fpls.2024.1406074>

[73] Yang Y., Chen X., & Tang L. (2021). Research on cooperative detection of stochastic resonance and chaos phase transition in Duffing systems for weak signal identification. *Sensors*, 21(9), 3180. <https://doi.org/10.3390/s21093180>

[74] Yilmaz D., & Sagiroglu H.C. (2015). Development of measurement system for grain loss of some chickpea varieties. *Measurement*, 66, 73–79. <https://doi.org/10.1016/j.measurement.2014.11.038>

[75] Yin C., Zhang Q., Mao X., Chen D., Huang S., & Li Y. (2024). Research of real-time corn yield monitoring system with DNN-based prediction model. *Frontiers in Plant Science*, 15, 1453823. <https://doi.org/10.3389/fpls.2024.1453823>

[76] Yuan X., Mai Z., Li Z., Yu Z., Ci H., & Zhang X. (2023). A 3D-printing approach toward flexible piezoelectronics with function diversity. *Materials Today*, 69, 160–192. <https://doi.org/10.1016/j.mattod.2023.08.023>

[77] Zhang G.Y., Jin C.Q., Yang T.X., Liu Z., Chen M., & Zhou D.D. (2019). Design and implementation of monitoring system for cleaning loss rate of combine harvesters (联合收获机清选损失率监测系统设计与实现). *Journal of Chinese Agricultural Mechanization*, 40(4), 146–150.

[78] Zhao H., Chen K., Sun J., & Guo L. (2025). High-temperature piezoelectric composites with enhanced stability up to 500°C. *Ceramics International*, 51(5), 6621–6632. <https://doi.org/10.1016/j.ceramint.2025.01.145>

[79] Zhao Z., Li Y.M., Chen Y., & Liang Z.W. (2013). Dynamic analysis of vibration reduction structure of PVDF grain sensor (PVDF 谷物传感器减振结构动力学分析). *Journal of Vibration, Measurement & Diagnosis*, 33(1), 127–131, 170.

[80] Zhou L.M., Zhang X.C., Liu Y.C., & Wan Y.W. (2010). Design and experiment of PVDF array sensor for grain loss measurement of combine harvesters (联合收获机谷物损失测量 PVDF 阵列传感器设计与试验). *Transactions of the Chinese Society for Agricultural Machinery*, 41(6), 167–171.

[81] Zhou X.L. (2010). *Research on cleaning loss monitoring system of grain combine harvesters* (谷物联合收获机清选损失监测系统研究) [Doctoral dissertation]. Northwest A&F University, Yangling, China.

[82] Zhu J.F. (2023). Current situation, influencing factors and improvement countermeasures of post-harvest grain loss in China—taking farmers' grain storage link as an example (我国粮食产后损失现状、影响因素及改善对策——以农户储粮环节为例). *Jiangxi Social Sciences*, 43(9), 29–40. Jiangxi, China.

[83] Zhu Z., Chai X., & Xu L. (2025). Research on predictive control of a novel electric cleaning system for combine harvester based on data-driven. *Computers and Electronics in Agriculture*, 232, 110075. <https://doi.org/10.1016/j.compag.2025.110075>

[84] Zhan L., & Du Z.X. (2021). Thoughts and suggestions on promoting grain loss reduction and waste reduction through overall food chain management (推进粮食全链条管理减损降耗的思考建议). *Economic Review*, (1), 90–97.

[85] Yan B., Zhang F., Wang M., Zhang Y., & Fu S. (2024). Flexible wearable sensors for crop monitoring: A review. *Frontiers in Plant Science*, 15, 1406074. <https://doi.org/10.3389/fpls.2024.1406074>